
1

Six Shades (not fifty!) of Grey: PocketLab Voyager/Scratch Dice

Introduction

This is a programming project that capitalizes on PocketLab-Scratch Integration. This project makes use
of the Scratch random number block to simulate rolling an ordinary six-sided die. The six random but
equally likely outcomes are mapped to sprites of six different shades of gray. Voyager’s light sensor is
then used to determine the value of the die’s roll, mapping light sensor values to the corresponding
sprite from six images of the face up on the die. A short action video of the author’s solution
accompanies this lesson. A snapshot from this video is shown in Figure 1.

Figure 1

The Author’s Approach

Figure 2 shows the ScratchX canvas. The background is purposely black. The large red square is a sprite
placed simply to let the dice player know where to place Voyager. The white circle in this square is
Ball6, the brightest of the six Balls. All six balls are on top of one another, so show and hide blocks must
be used to show the appropriate ball. Die1 through Die 5 are images of the six sides of a die, and have
been imported as sprites. A pdf file from which the images may be extracted with any imaging software
has been included with this lesson. All of the die images are on top of one another, so show and hide
blocks must be used to show the appropriate die. The blue button is intended to be clicked by the dice
player in order to display a “roll” of the dice. The “PocketLab Dice” text sprite contains the main code
driving the random rolls of the die.

2

Figure 2

Figure 3 shows the ScratchX code for the Master sprite “PocketLab Dice”. This code continually drives
the die roll simulation process. There is a forever loop. With each iteration of the loop, a random
number dieRoll from 1 through 6 is drawn, a series of nested if blocks broadcasts a message to the
appropriate sprite ball, and there is a two second delay.

Figure 3

3

Figure 4 shows two event procedures for the ball1 sprite. When the green flag is clicked to start the
program, the ball1 sprite is set to the desired size of 325% and then hidden. Upon receiving mesage1
from the master sprite, ball1 is shown for 1 second and then hidden. Similar events exist for ball2
through ball6.

Figure 4

Figure 5 shows the click event code for the blue button. First a message hideDie is broadcasted to all of
the ball sprites to hide them. Then there is a wait until the light sensor value is less than 15, meaning
that the last die face that was on the screen has been hidden, and the black background is now visible.
Since the background will be black for 1 second, there is a 1 second delay, after which the light sensor
value is grabbed and stored in the variable plDie. Then in a series of nested if blocks, the variable plDie
is compared to actual ranges for each of the light intensities of the six balls. As soon as the correct
range is identified, a message of the form message1x is broadcasted to the appropriate diex image.

Figure 5

4

Figure 6 shows the three event procedures for die1. There are similar events for die2 through die6.
When the program is started, the size of the die1 face image is set to 50% and then hidden. When die1
receives message 11, it is moved to the front and shown. When die1 receives the hideDie message, it is
hidden.

Figure 6

Determining the Light Intensity Range for Displaying Each Die Face

Figure 7 is a screen print of approximately two minutes of simulated die roll light intensities (at 10
points/second). Each roll is separated by a black screen, which explains the zero light intensity every
other second. Observation of this graph suggests that the die rolls are random and equally probable.
Light intensities fall into six Lux categories in agreement with those in Figure 5. The Asus Chromebook
screen was set to maximum brightness. Clearly, this kind of calibration is required for any particular
Chromebook screen used with this lesson.

Figure 7

