

Solutions to Exercises:

The Physics of a Falling and Unrolling TP Roll
(1) $\omega_{f}=\left(1650^{\circ} / \mathrm{s}\right)\left(\pi\right.$ radians $\left./ 180^{\circ}\right)=28.8 \mathrm{rad} / \mathrm{s}$
(2) $\alpha=\left(6626^{\circ} / \mathrm{s}^{2}\right)\left(\pi\right.$ radians $\left./ 180^{\circ}\right)=116 \mathrm{rad} / \mathrm{s}^{2}$
(3) $a=\alpha R_{2}=\left(116 \mathrm{rad} / \mathrm{s}^{2}\right)(0.0575 \mathrm{~m})=6.67 \mathrm{~m} / \mathrm{s}^{2}$
(4) $\mathrm{v}_{\mathrm{f}}=\operatorname{sqrt}\left(\mathrm{v}_{\mathrm{o}}{ }^{2}+2 \mathrm{ad}\right)=\operatorname{sqrt}\left(0+2 \cdot 6.67 \mathrm{~m} / \mathrm{s}^{2} \cdot 0.35\right)=2.16 \mathrm{~m} / \mathrm{s}$
(5) $\mathrm{F}_{\text {net }}=\mathrm{mg}-\mathrm{T}=\mathrm{ma} \rightarrow \mathrm{T}=\mathrm{m}(\mathrm{g}-\mathrm{a})=0.155 \mathrm{~kg}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}-6.67 \mathrm{~m} / \mathrm{s}^{2}=0.49 \mathrm{~N}\right.$

Optional Exercise Solution:

- Translation motion: $\mathrm{F}_{\mathrm{net}}=\mathrm{mg}-\mathrm{T}=\mathrm{ma}$
- Rotational motion: $\Sigma \tau=l \alpha$
- Moment of inertia, I, of an annular cylinder about cylinder axis $=1 / 2 m \cdot\left(R_{1}{ }^{2}+R_{2}{ }^{2}\right)$
- $\alpha=a / R_{2}$
- $\Sigma \tau=R_{2} T$ (mg , acting on the center-of-mass, provides no torque)
- A fair amount of algebraic manipulation will yield the following formula:

$$
\mathrm{T}=\frac{\mathrm{mg}\left(\mathrm{R}_{1}^{2}+\mathrm{R}_{2}^{2}\right)}{\mathrm{R}_{1}^{2}+3 \mathrm{R}_{2}^{2}}
$$

