Calculation of Turn Radii for the Car

Turn \#1

From the graphs, angular velocity is $5.432^{\circ} / \mathrm{s}$ and centripetal acceleration is $1.264 \mathrm{~m} / \mathrm{s}^{2}$.

Angular velocity $=\omega=5.432{ }^{\circ} / \mathrm{s} \times 2 \pi / 360 \mathrm{rad} /{ }^{\circ}=0.0948 \mathrm{rad} / \mathrm{s}$.

Since $a_{c}=\omega^{2} r$, then $r=a_{c} / \omega^{2}=1.264 m / s^{2} /(0.0948 / \mathrm{s})^{2}=141 \mathrm{~m}$.

Turn \#2

From the graphs, angular velocity is 5.146% and centripetal acceleration is $1.093 \mathrm{~m} / \mathrm{s}^{2}$.

Angular velocity $=\omega=5.146^{\circ} / \mathrm{s} \times 2 \pi / 360 \mathrm{rad} /{ }^{\circ}=0.0898 \mathrm{rad} / \mathrm{s}$.

Since $a_{c}=\omega^{2} r$, then $r=a_{c} / \omega^{2}=1.093 \mathrm{~m} / \mathrm{s}^{2} /(0.0898 / \mathrm{s})^{2}=135.5 \mathrm{~m}$.

