Skip to main content

Use PocketLab to model relationship of friction/stress to frequency and size of Earthquake

Profile picture for user DaveBakker
Submitted by DaveBakker on Wed, 05/31/2017 - 00:10

This cool demonstration was brought to us via Twitter by Earth and Environmental Science Teacher, Ryan Hollister (follow him at @phanertic). 

Using PocketLab's 3-axis accelerometer, the PocketLab app's video function, and an Earthquake Machine (instruction on how to build one here, more resources here), Ryan provides his students with a unique way to visualize a difficult concept. 

His first PocketLab video simulates a high-friction/stress Earthquake model. Energy is stored, elastically, and then suddenly released as a large Earthquake. The high-friction/stress results in Earthquakes with lower frequency but greater magnitude.

His second video models a "slow-creep" of a continental plate along a fault-line, similar to sections of the San Andreas fault and the Cascadia subduction zone. The video simulates a low-friction/stress Earthquake model. Energy is released much more frequently but at lower magnitudes. Ryan points out that over time both models release the same energy, just in different ways. High friction equals fewer but larger Earthquakes whereas low friction equals frequent but smaller Earthquakes.

For some interesting articles on slow-creep Earthquakes check these out here and here. For a terrifying read if you're a resident of the Pacific Northwest, check out this New Yorker article from July 2015 (it even scared the White House to pay more attention to the Cascadia subduction zone). 

Low-friction earthquake model
Grade Level

To access this free lesson, please sign up to receive communications from us: