Skip to main content

High School Physics

Prepare your students for real-world problem solving and open-ended lab experiments. Experienced educators and curriculum specialists have developed each of these lessons, and we have tested them in real classrooms. PocketLab physics lessons cover introductory and advanced topics from one-dimensional motion to electricity and magnetism to simple harmonic motion. Browse all the high school and AP-level physics lessons below or use the filters to search for specific content.

Filter by:

Physics from a Croquet Mallet and Ball

Profile picture for user Rich
Submitted by Rich on Sat, 01/19/2019 - 20:23

Introduction

Various forms of the sport now known as croquet have been around for centuries.  Plastic or wooden balls are struck with a mallet through hoops, called wickets in the United States.  The components of a typical croquet set are shown in Figure 1.  Very popular in the UK, there is even a World Croquet Federation for those who take the sport seriously.  In the United States, it is common to set up croquet as a garden game at graduation and birthday parties.  But who would have thought that a croquet ball and mallet equipped with PocketLab Voyager and the PocketL

Subject
Grade Level

PocketLab Voyager: Newton's Law of Cooling

Profile picture for user Rich
Submitted by Rich on Thu, 01/03/2019 - 03:02

Newton's Law of Cooling

In this experiment students will use PocketLab Voyager to collect data related to the cooling of a container of hot water as time goes on.  Sir Isaac Newton modeled this process under the assumption that the rate at which heat moves from one object to another is proportional to the difference in temperature between the two objects, i.e., the cooling rate = -k*TempDiff.  In the case of this experiment, the two objects are water and air.

Subject
Grade Level

Fluid Pressure in a Fluid at Rest

Profile picture for user Rich
Submitted by Rich on Fri, 12/21/2018 - 01:22

Introduction

In a PockeLab lesson entitled "Hydrostatic Pressure Lab", posted by kwarnke in October 2017, students investigate the relationship between the height of a column of water and hydrostatic pressure.  The lab results worked very well in this regard, but the apparatus uses a 5-gallon jug with modifications, a bicycle pump, and 5 meters of vinyl tubing.  We should be able to come up with a much simpler and less expensive fluid pressure apparatus to achieve the same result, as the

Subject
Grade Level

Rolling Resistance Lab: CloudLab/Mini HotRod

Profile picture for user Rich
Submitted by Rich on Tue, 12/11/2018 - 16:25

Rolling Resistance Introduction

Rolling resistance is a force that opposes the motion when an object rolls along a surface.  There are many examples of objects experiencing rolling resistance:  car or bicycle tires on pavement, skateboard wheels on a half pipe ramp, steel wheels on a railroad track, ball bearings in a pulley, bowling balls on a bowling lane, and carts rolling on a dynamics track, just to mention a few.  Many factors can affect the magnitude of the forces associated with rolling resistance.

Subject
Grade Level

Crash Cushioning Lab - NGSS Based

Profile picture for user Rich
Submitted by Rich on Thu, 12/06/2018 - 16:09

Introduction to Crash Cushioning

In addition to automobile features that promote road safety, there has been and continues to be a great deal of work on highway features that save lives.  An earlier lab entitled Crash Cushion Investigation, submitted by PocketLab, makes use of the PocketLab HotRod to investigate crash cushioning similar to that shown in Figure 1.    

Terminal Velocity vs Area of a Falling Object

Profile picture for user Rich
Submitted by Rich on Tue, 12/04/2018 - 00:22

Terminal Velocity Introduction

The effect of mass on the terminal velocity of an object falling in air is commonly done using basket coffee filters.  But how could we study the effect of area on the terminal velocity of a falling object?  One way to do this is to use PocketLab Voyager and its range finder along with a single piece of cardstock as the object to be dropped.

Subject
Grade Level

Energy Conservation with a Mini HotRod

Profile picture for user Rich
Submitted by Rich on Thu, 11/29/2018 - 22:16

Introduction

What can you do with a PocketLab Mini HotRod, Voyager, five pieces of HotWheels track, and a half-dozen wood blocks about the size of Jenga blocks?  How about an experiment in energy conservation!  Add CloudLab and you have an environment for your students/lab groups to perform, analyze, document and save their PocketLab lab reports.

Subject
Grade Level

Hysteresis of a Tactile Sensor

Profile picture for user Rich
Submitted by Rich on Mon, 07/30/2018 - 15:38

What is hysteresis?

Hysteresis can be defined as a lag time in the response of a system to forces placed on the system.  A common way used in physics classes to observe hysteresis is by loading and then unloading weights from a suspended rubber band, while observing the extension of the rubber band.  Students find that the rubber band does not Obey Hooke's law.  They also observe that the amount of stretch of the rubber band is different when unloading than when loading.

Subject
Grade Level

To access this free lesson, please sign up to receive communications from us: